Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»

Кафедра информатики и программирования

Численное моделирование движения слабоконцентрированной суспензии в пористой среде

Авторы:

Фалькович Александр Савельевич, профессор кафедры информатики и программирования;

Булавина Екатерина Викторовна, старший преподаватель кафедры информатики и программирования

Течение жидкости в пористых средах, или фильтрация, – один из самых распространенных процессов в природе, технике и технологиях.

Пористая среда — это почвы, грунты, горные породы, строительные и другие искусственные материалы, частицы которых неплотно прилегают друг к другу, образуя связанные между собой пустоты, через которые может перемещаться жидкость или газ.

Рассмотрим модель движения воды в пористой среде с взвешенными твердыми частицами.

$$\rho = \frac{\rho_w + c\rho_p}{1 + c}$$

где с $\,$ – концентрация частиц в суспензии, $p_{\rm w}$ – плотность воды, $p_{\rm p}$ - плотность частиц

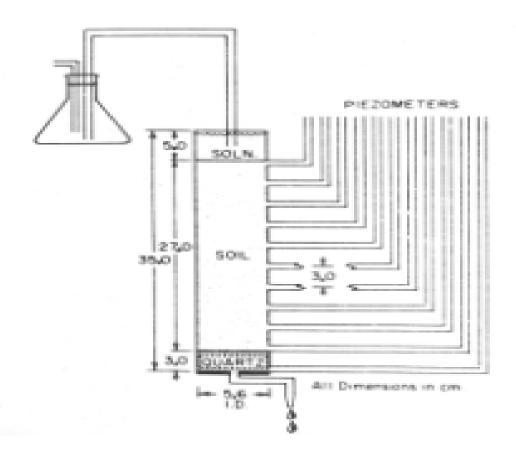
Уравнение движения слабоконцентрированной суспензии

$$u = \frac{k}{\mu} \left(-\frac{\partial p}{\partial x} - \frac{\partial (u\rho)}{\partial t} - \gamma - g \frac{\partial}{\partial x} (\rho x) \right)$$

где u - скорость движения жидкости, ρ - плотность почвенной влаги с взвешенными в ней мелкодисперсными частицами, μ - вязкость слабоконцентрированной суспензии, k - проницаемость почвы, γ - начальный градиент, t - время, x - вертикальная координата, p - внешнее давление, $\rho \cdot g \cdot x$ - гидростатический напор.

T = T(x) - время, с которого начинается вынос частиц в точке х (момент времени, когда до точки х доходит фронт жидкости с определенной концентрацией солей). Значения T(x) для каждой точки х определяются из соотношения

$$\int_{0}^{T} u(t)dt = x$$


$$a = \begin{cases} a_o e^{\omega(T-t)}, \text{если } t \ge T(x) \\ 0, \text{ если } t < T(x) \end{cases}$$

Уравнение баланса

$$m\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x}(u\rho) - \frac{\partial a}{\partial t}$$

где m — пористость, a(x,t) - функция источника.

Согласно статье H. Frenkel «Effects of Clay Type and Content Exchangeable Sodium Percentage, and Electrolyte Concentration on Clay Dispersion and Soil Hydraulic Conductivity»

Краевые условия задачи задают значения скорости и плотности в начальный момент и на верхней границе образца

$$\begin{cases} \rho_{o,j} = \rho_w \\ \rho_{i,0} = \rho_w \\ a_{0,j} = 0 \end{cases}$$

$$u_{t=0} = \frac{k}{\mu(\rho_w)} \left(-\frac{\rho_w g \cdot \Delta x}{L} \right)$$

Кроме того, модель должна содержать зависимость вязкости μ и начального градиента γ от плотности слабоконцентрированной суспензии ρ :

$$\mu_{ij} = \mu_0 \left(1 + \alpha_1 (\rho_{ij} - \rho_w) \right)$$

$$\gamma_{ij} = \gamma_0 \left(1 + \alpha_2 (\rho_{ij} - \rho_w) \right)$$

Уравнение движение слабоконцентрированной суспензии и уравнение баланса аппроксимируется соотношением

$$\begin{split} u_{ij} &= \frac{k}{\mu(\rho_{ij})} \left(-\frac{1}{2} \left(\frac{p_{i+1,j} - p_{i-1,j}}{\Delta x} + \frac{p_{i+1,j+1} - p_{i-1,j+1}}{\Delta x} \right) - u_{ij} \frac{\rho_{i,j+1} - \rho_{ij}}{\Delta t} - \rho_{ij} \frac{u_{i,j+1} - u_{ij}}{\Delta t} - \gamma(\rho_{ij}) - \rho_{ij} \cdot g \right. \\ &\left. - g \cdot x_i \cdot \frac{1}{2} \left(\frac{\rho_{i+1,j} - \rho_{ij}}{\Delta x} + \frac{\rho_{i+1,j+1} - \rho_{i,j+1}}{\Delta x} \right) \right) \end{split}$$

$$m\frac{\rho_{i,j+1}-\rho_{ij}}{\Delta t} = -\frac{1}{2}\left(\frac{u_{i+1,j}-u_{ij}}{\Delta x}\rho_{ij} + \frac{u_{i+1,j+1}-u_{ij+1}}{\Delta x}\rho_{ij+1}\right) - \frac{1}{2}\left(\frac{\rho_{i+1,j}-\rho_{ij}}{\Delta x}u_{ij} + \frac{\rho_{i+1,j+1}-\rho_{ij+1}}{\Delta x}u_{ij+1}\right) - \omega a_{ij}.$$

Спасибо за внимание!!!