VIII Международная научная конференция имени А.М.Богомолова «Компьютерные науки и информационные технологии» (Саратов, 2 июля – 3 июля 2018 года)

ТЕОРИЯ И ПРИЛОЖЕНИЯ РАНДОМИЗИРОВАННЫХ ФУНКЦИОНАЛЬНЫХ АЛГОРИТМОВ: НОВЫЕ РЕЗУЛЬТАТЫ

Войтишек А.В.

Институт вычислительной математики и математической геофизики СО РАН, Новосибирский государственный университет (НГУ)

ОБЛАСТЬ НАУЧНЫХ ИНТЕРЕСОВ ДОКЛАДЧИКА

- дискретно-стохастические численные методы

(численные сеточные или итерационные методы + метод Монте-Карло)

МОНОГРАФИИ (УЧЕБНЫЕ ПОСОБИЯ)

- [1] Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование. Методы Монте-Карло. М.: Изд. центр «Академия», 2006. 368 с. (переиздание: Статистическое моделирование. Методы Монте-Карло. М.: Издательство «Юрайт», 2018. см. следующий слайд).
- [2] Войтишек А.В. Дополнительные сведения о численном моделировании случайных элементов. Новосибирск: НГУ, 2007. 92 с.
- [3] *Войтишек А.В.* Дискретно-стохастические модификации стандартного метода Монте-Карло. Новосибирск: НГУ, 2009. 104 с.
- [4] *Войтишек А.В.* Функциональные оценки метода Монте-Карло. Новосибирск: НГУ, 2007. 76 с.

http://mmf.nsu.ru/education/materials

Войтишек А.В. Рандомизированные итерационные численные модели и алгоритмы. – LAP LAMBERT Academic Publishing RU, 2017 (см. далее).

Г. А. Михайлов, А. В. Войтишек

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

МЕТОДЫ МОНТЕ-КАРЛО



В докладе представлен краткий обзор работ:

- [1] Михайлов Г.А., Трачева Н.В., Ухинов С.А. Рандомизированный проекционный метод для оценки угловых распределений поляризованного излучения на основе численного статистического моделирования // Журнал вычислительной математики и математической физики. 2016. Т. 56, № 9. С. 1560—1570.
- [2] Rogazinsky S.V. Statistical modelling algorithm for solving the nonlinear Boltzmann equation based on the projection method // Russian Journal of Numerical Analysis and Mathematical Modelling. − 2017. Vol. 32, № 3. − P. 197–202.
- [3] Voytishek A.V., Shipilov N.M. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind // AIP Conference Proceedings. 1907, 030015 (2017).
- [4] Войтишек А.В. Разработка и оптимизация рандомизированных функциональных численных методов решения практически значимых интегральных уравнений Фредгольма второго рода // Сибирский журнал индустриальной математики. 2018. Т. 21. № 2 (74) С. 32–45.

В этих работах рассматриваются задачи, связанные с приближением решения $\varphi(x)$ интегрального уравнения Φ редгольма второго рода

$$\varphi(x) = \int_X k(x', x)\varphi(x') dx' + f(x)$$
 или $\varphi = K\varphi + f$

на компактном множестве $X \subseteq \mathbb{R}^d$; здесь функции k(x',x) (ядро интегрального оператора K) и f(x) (свободный член уравнения) — заданы.

Какие приложения?!

В основном это задачи, связанные с прикладными (обрывающимися) цепями Маркова (см. далее): перенос частиц, излучения и т.п.

Особенностью задачи приближения функции $\varphi(x)$ является то обстоятельство, что функция задана в неявной (интегральной) форме.

Это означает невозможность явного (с использованием композиций элементарных функций) вычисления как самой функции $\varphi(x)$ в фиксированном наборе точек $X^{(M)} = \{x_1, ..., x_M\}$ (например, на аппроксимационной сетке):

$$\boldsymbol{\varphi}^{(M)} = \{ \varphi(x_1), \dots, \varphi(x_M) \},\$$

так и функционалов вида

$$\mathbf{F}^{(M)} = \{(\varphi, \chi_1), \dots, (\varphi, \chi_M)\}; \quad (\varphi, \chi_i) \stackrel{\text{def}}{=} \int_X \varphi(y) \chi_i(y) s(y) dy$$

для заданного набора «базисных» функций $\Xi^{(M)} = \{\chi_1(x), ..., \chi_M(x)\}$, весовой функции s(y) и достаточно большого M.

Поэтому при построении алгоритмов аппроксимации функции $\varphi(x)$ (мы будем называть их φ ими функциональными алгоритмами) предполагается численное приближение величин $\varphi^{(M)}$ или $F^{(M)}$.

Особо будут выделены *рандомизированные* функциональные алгоритмы, в которых величины $\boldsymbol{\varphi}^{(M)}$ и $\boldsymbol{F}^{(M)}$ приближаются методом Монте-Карло (см., например, [1]).

Для приближения функции $\varphi(x)$ используем представления классической теории численной аппроксимации функций, имеющих общий вид

$$\varphi(x) \approx L_M \varphi(x) = \sum_{i=1}^M w_i \chi_i(x)$$

для некоторого специально выбранного набора «базисных» функций $\mathbf{\Xi}^{(M)}$ (вид этих функций определяет тип аппроксимации) и коэффициентов

$$\mathbf{W}^{(M)} = \{w_1, \dots, w_M\}.$$

В работах [3] и [4] предлагается новая (по сравнению с учебником [1]) классификация рандомизированных функциональных алгоритмов.

Выделены, в частности, два главных типа функциональных алгоритмов, связанных с представлением $L_M \varphi(x)$: проекционные и сеточные численные методы.

Для проекционных функциональных алгоритмов базисные функции $\mathbf{E}^{(M)}$ из аппроксимации $L_M \varphi(x)$ представляют собой отрезок ряда (длины M) ортогональных (с весом s(y)) функций (как правило, многочленов), для которых

$$(\chi_i,\chi_j) = \int_X \chi_i(y)\chi_j(y)s(y) dy = 0; \quad i \neq j; \quad i,j = 1,\dots,M.$$

Здесь коэффициенты $W^{(M)}$ равны величинам $F^{(M)}$: $w_i = (\varphi, \chi_i)$.

Для *сеточных функциональных алгоритмов* коэффициенты $W^{(M)}$ представляют собой некоторые комбинации значений $\varphi^{(M)}$ в точках достаточно регулярной сетки $X^{(M)}$:

$$w_i = w_i(\boldsymbol{\varphi}^{(M)})$$
; чаще всего $w_i = \varphi(x_i)$.

Далее строятся (различными способами) приближения

$$\widetilde{\boldsymbol{W}}^{(M)} = \{\widetilde{w}_1, \dots, \widetilde{w}_M\}$$

величин $w_i = (\varphi, \chi_i)$, $w_i = w_i (\varphi^{(M)})$ или $w_i = \varphi(x_i)$, и **окончательная** аппроксимация имеет вид

$$\varphi(x) \approx L_M \widetilde{\varphi}(x) = \sum_{i=1}^M \widetilde{w}_i \chi_i(x).$$
 (*)

При исследовании и оптимизации аппроксимационного функционального алгоритма (*) важным и содержательным оказывается координированный учет погрешностей, связанных с использованием приближения $L_M \varphi(x)$ и с получением неточных значений $\widetilde{W}^{(M)}$ (см., в частности, [1, 4]).

Исходное интегральное уравнения $\varphi = K\varphi + f$ имеет вероятностный смысл, который проявляется в достаточно распространенном на практике случае, когда свободный член f(x) имеет свойства вероятностной плотности, а ядро k(x',x) имеет вид

$$k(x',x) = (1 - p_a(x'))r(x',x),$$

где функция $r(x',x)=r(x'\to x)=r_\xi(x|\eta=x')$ является условной плотностью вероятностей, а значения функции $p_a(x')$ заключены между нулем и единицей.

В этом случае можно рассмотреть **прикладную цепь Маркова** или однородную цепь Маркова, обрывающуюся с вероятностью единица (подробнее см. [1]):

$$\widetilde{\boldsymbol{A}} = \left\{\widetilde{\boldsymbol{\xi}}^{(0)}, \widetilde{\boldsymbol{\xi}}^{(1)}, \dots, \widetilde{\boldsymbol{\xi}}^{(T-1)}, \widetilde{\boldsymbol{\xi}}^{(T)}\right\}$$

с начальной плотностью f(x) и переходной функцией k(x',x).

Здесь $p_a(x')$ — вероятность обрыва цепи в точке x' (при этом T — это случайный номер состояния обрыва), а $r(x',x)=r\big(\tilde{\xi}^{(t-1)}\to\tilde{\xi}^{(t)}\big)=r_{\tilde{\xi}^{(t)}}\big(x|\tilde{\xi}^{(t-1)}=x'\big)$ — плотность перехода (одинаковая для всех $t=1,\ldots,T$).

Тогда, согласно аналогу формулы полной («безусловной») плотности вероятности для обрывающейся цепи \widetilde{A} , имеем

$$\varphi^{(t)}(x) = \int_X \varphi^{(t-1)}(x')k(x',x) dx' = K\varphi^{(t-1)}(x); \quad \varphi^{(0)}(x) = f(x);$$

здесь $\varphi^{(t)}(x)$ — плотность распределения случайной величины $\tilde{\xi}^{(t)}$ и $t=1,\ldots,T.$

Методом математической индукции получаем, что $\varphi^{(t)}(x) = K^t f(x)$ и что полная (суммарная) плотность состояний цепи \widetilde{A}

$$\varphi(x) = \varphi^{(0)}(x) + \varphi^{(1)}(x) + \dots + \varphi^{(t)}(x) + \dots \tag{*}$$

представляет собой *ряд Неймана* (см., например, **[1]**) и потому (в условиях сходимости этого ряда, например, при $1-p_a(x') \leq q < 1$ для всех $x' \in X$) является единственным решением интегрального уравнения $\varphi = K\varphi + f$.

Таким образом, полная (суммарная) плотность состояний (*) прикладной цепи Маркова \widetilde{A} с начальной плотностью f(x) и переходной функцией k(x',x) при выполнении условий типа $1-p_a(x') \leq q < 1$ является единственным решением интегрального уравнения Фредгольма второго рода $\varphi = K\varphi + f$.

Такое уравнение целесообразно называть марковским.

Приведенные здесь фрагменты теории марковских интегральных уравнений помогают в обосновании *основного весового оценивателя* (монте-карловской оценки) или **оценивателя по столкновениям**

$$\zeta = \sum_{t=0}^{T} Q^{(t)} h(\xi^{(t)}) \qquad (*)$$

для приближенного вычисления линейного функционала вида

$$I_h = \int_X \varphi(x)h(x) \ dx \stackrel{\text{def}}{=} (\varphi, h) = \mathbf{E}\zeta$$

(для заданной функции h(x)) от решения $\varphi(x)$ уравнения $\varphi = K\varphi + f$ (здесь рассматривается произвольный случай, для которого условия, обеспечивающие «вероятностный смысл» уравнения, могут не выполняться) – см., например, [1].

В формуле (*) $A = \{\xi^{(0)}, \xi^{(1)}, ..., \xi^{(T-1)}, \xi^{(T)}\}$ – прикладная цепь Маркова с начальной плотностью распределения $\pi(x)$ (это плотность распределения случайной величины $\xi^{(0)}$) и переходной функцией

$$p(x',x) = p_{\xi(t)}(x|\xi^{(t-1)} = x') = (1 - p_a(x'))r(x',x);$$

здесь $p_a(x')$, как и выше, — вероятность обрыва цепи в точке x', r(x',x) — вероятностная переходная плотность,

T – случайный номер состояния обрыва.

Случайные веса $Q^{(t)}$ из соотношения (*) определяются рекуррентно по формулам

$$Q^{(0)} = \frac{f(\xi^{(0)})}{\pi(\xi^{(0)})}; \quad Q^{(t)} = Q^{(t-1)} \frac{k(\xi^{(t-1)}, \xi^{(t)})}{p(\xi^{(t-1)}, \xi^{(t)})}.$$

Из соотношения $I_h = \mathbf{E}\zeta$ следует, что, реализуя на ЭВМ траектории прикладной цепи Маркова A с начальной плотностью $\pi(x)$ и переходной функцией p(x',x), можно приближать функционал I_h методом Монте-Карло

$$I_h = \mathbf{E}\zeta \approx \frac{\zeta_1 + \dots + \zeta_N}{N}$$

(см., например, [1]), вычисляя соответствующие значения $\zeta_1, ..., \zeta_N$ по формуле (*).

На основе рассуждений предыдущего раздела можно построить следующий *рандомизированный проекционный функциональный алгоритм*.

АЛГОРИТМ 1. *Реализуя N траекторий*

$$\boldsymbol{A}_{n} = \left\{ \xi_{n}^{(0)}, \xi_{n}^{(1)}, \dots, \xi_{n}^{(T_{n}-1)}, \xi_{n}^{(T_{n})} \right\}; \quad n = 1, \dots, N$$

прикладной цепи Маркова А, вычисляем значения

$$\widetilde{w}_{i} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T_{n}} Q_{n}^{(t)} \chi_{i} \left(\xi_{n}^{(t)} \right) s \left(\xi_{n}^{(t)} \right); \quad i = 1, ..., M,$$

а затем используем приближение $\varphi(x) \approx L_M \widetilde{\varphi}(x) = \sum_{i=1}^M \widetilde{w}_i \chi_i(x)$.

Идея Алгоритма 1 была впервые предложена более полувека назад в работе А.С.Фролова и Н.Н.Ченцова

Фролов А.С., Ченцов Н.Н. Использование зависимых испытаний в методе Монте-Карло для получения гладких кривых // Труды Всесоюзного совещания по теории вероятностей и математической статистике. – Вильнюс, 1962. – С. 425–437

но более или менее интенсивное применение (во всяком случае, в российской науке) эта идея нашла лишь в последнее время.

Конкретнее, в работе

[1] Михайлов Г.А., Трачева Н.В., Ухинов С.А. Рандомизированный проекционный метод для оценки угловых распределений поляризованного излучения на основе численного статистического моделирования // Журнал вычислительной математики и математической физики. 2016. Т. 56, № 9. С. 1560—1570

проекционный метод применен в задаче переноса излучения; здесь потребовалось строить специальные ортонормированные базисы, сопряженные с используемой сферической системой координат.

В работе

[2] Rogazinsky S.V. Statistical modelling algorithm for solving the nonlinear Boltzmann equation based on the projection method // Russian Journal of Numerical Analysis and Mathematical Modelling. 2017. Vol. 32, № 3. P. 197–202

проекционный метод (с базисом Эрмита) применен при решении нелинейного уравнения Больцмана.

Эрмитов базис используется также в исследованиях, проводимых в области теории переноса Г.А.Михайловым и Г.З.Лотовой.

Гораздо более подробно (по сравнению с проекционным) исследованы рандомизированные *сеточные* функциональные алгоритмы, связанные с применением основного оценивателя $\zeta = \sum_{t=0}^{T} Q^{(t)} h(\xi^{(t)})$ (см., в первую очередь, [1, 4]).

В качестве примера приведем **метод зависимых испытаний** (или функциональную локальную оценку), идея которого была впервые предложена все в той же работе А.С.Фролова и Н.Н.Ченцова.

АЛГОРИТМ 2. Реализуя N траекторий A_n прикладной цепи Маркова A, вычисляем значения

$$\tilde{\varphi}_i = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T_n} Q_n^{(t)} k\left(\xi_n^{(t)}, x_i\right) + f(x_i); \quad i = 1, \dots, M(*)$$

и вычисляем коэффициенты $\widetilde{oldsymbol{W}}^{(M)}$ по формулам

$$\widetilde{w}_i = w_i (\widetilde{oldsymbol{arphi}}^{(M)})$$
 или $\widetilde{w}_i = \widetilde{oldsymbol{arphi}}_i$, где $\widetilde{oldsymbol{arphi}}^{(M)} = (\widetilde{oldsymbol{arphi}}_1, ..., \widetilde{oldsymbol{arphi}}_M)$,

а затем используем приближение $\varphi(x) \approx L_M \widetilde{\varphi}(x) = \sum_{i=1}^M \widetilde{w}_i \chi_i(x)$.

Идея построения приближений (*) решения уравнения $\varphi = K\varphi + f$ в узлах сетки $X^{(M)}$ состоит в том, что первое слагаемое в правой части интегрального уравнения имеет вид функционала I_h :

$$\int_{X} k(x', x) \varphi(x') dx' = I_{h_{x}} = (\varphi, h_{x}); \quad h_{x}(x') = k(x', x).$$

Метод зависимых испытаний, обладая рядом несомненных преимуществ:

- простота построения,
- экономичность,
- сохранение гладкости решения для приближения $\varphi(x) \approx L_M \tilde{\varphi}(x)$,
- независимость погрешности от числа узлов сетки $X^{(M)}$,

используется относительно редко, так как требует повышенной гладкости ядра k(x',x) и свободного члена f(x) уравнения $\varphi=K\varphi+f$ по переменной x [1, 4].

Проведенное нами в работах [3, 4] подробное исследование показало, что для многих практически важных задач применение сеточных методов (типа Алгоритма 2 и др.) затруднено из-за невозможности вычисления ядер и свободных членов исследуемых интегральных уравнений вида $\varphi = K\varphi + f$ во всех точках множества X.

В этом смысле весьма привлекательным видится использование в этих задачах проекционных алгоритмов (типа Алгоритма 1).

В магистерской выпускной работе Н.М.Шипилова (и в его последних докладах на конференциях в Новосибирске и Барселоне) на тестовом примере из учебника [1] проведено численное сравнение проекционного метода с базисными функциями Эрмита и метода зависимых испытаний.

Здесь интегральное уравнение $\varphi = K\varphi + f$ является одномерным, решение представляет собой гладкую функцию, особенности в функциях k(x',x) и f(x) отсутствуют.

В этой ситуации метод зависимых испытаний ожидаемо показал большую эффективность (экономичность).

Кроме того, показано, что **проекционный метод хуже воспроизводит гладкость решения и менее численно устойчив** по сравнению с сеточным методом зависимых испытаний.

Отмечено также, что точность глобального приближения функции $\varphi(x)$ в рассматриваемом случае существенно зависит от средних длин траекторий используемых прикладных цепей Маркова.

Важно заметить, что, в отличие от сеточных методов, для проекционных алгоритмов несколько затруднено применение *теории условной оптимизации* (см. [1, 4]).

В этой теории речь идет о согласованном выборе параметров M (число узлов и базисных функций) и N (число реализуемых на компьютере траекторий прикладной цепи Маркова) используемых функциональных алгоритмов, обеспечивающем заданный уровень погрешности (обозначим его γ) при минимальных вычислительных затратах S.

Строится верхняя граница UP(M,N) погрешности алгоритма $\delta(M,N)$, зависящая от параметров M и N:

$$\delta(M,N) \lesssim UP(M,N)$$
.

Эта функция двух переменных приравнивается величине γ .

Из уравнения вида

$$UP(M,N) = \gamma$$

один из параметров (например, N) выражается через другой: $N=\psi(M)$.

Это соотношение подставляется в выражение для затрат S(M,N) (которое тоже зависит от параметров M и N).

В результате получается функция $\tilde{S}(M)$ одного переменного M, которая исследуется на минимум с помощью известных приемов математического или численного анализа.

Найденные значения $M_{min}(\gamma)$, $N = \psi(M_{min}(\gamma))$ объявляются **условно- оптимальными параметрами** модели (алгоритма).

«Условность» такого способа оптимизации связана с тем, что в левой части уравнения вида $UP(M,N) = \gamma$ используется не сама погрешность алгоритма $\delta(M,N)$, а ее верхняя граница UP(M,N) (а вдруг эта граница неточная, грубая?!).

Проблемы проведения таких рассуждений для проекционных методов связаны наличием «хвостов» $\{\chi_{M+1}(x), \chi_{M+2}(x), ...\}$ бесконечных ортогональных систем функций и необходимостью их оценки для построения верхних границ погрешности вида $\delta(M,N) \lesssim UP(M,N)$.

В этом смысле во многих полезных приложениях гораздо проще (и, возможно, эффективнее) использовать модификации проекционного функционального Алгоритма 1 (которые целесообразно называть **проекционно-сеточными методами**), для которых дополнительно вводятся финитные функции $\{\chi^{(x_i)}(x)\}$, носители которых сосредоточены вблизи соответствующих узлов x_i регулярной сетки $X^{(M)}$ так, что

$$\int_X \varphi(x) \chi^{(x_i)}(x) \ dx \approx \varphi(x_i). \quad (*)$$

Соотношения (*) позволяют приближенно вычислять значения решения $\varphi(x)$ уравнения $\varphi = K\varphi + f$ в узлах сетки $X^{(M)}$, используя соответствующие варианты основного весового оценивателя $\zeta = \sum_{t=0}^T Q^{(t)} h(\xi^{(t)})$.

АЛГОРИТМ 3 [4]. Реализуя N траекторий A_n прикладной цепи Маркова A, вычисляем значения

$$\tilde{\varphi}_i = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T_n} Q_n^{(t)} \chi^{(x_i)} \left(\xi_n^{(t)} \right); \quad i = 1, \dots, M.$$

 $ilde{arphi}_i=rac{1}{N}{\sum}_{n=1}^N{\sum}_{t=0}^{T_n}Q_n^{(t)}\chi^{(\chi_i)}\left(\xi_n^{(t)}
ight);\;\;i=1,...,M.$ Затем вычисляем коэффициенты $\widetilde{m{W}}^{(M)}$ по формулам $\widetilde{w}_i=w_iig(\widetilde{m{arphi}}^{(M)}ig)$ или $\widetilde{w}_i = \widetilde{\varphi}_i$, а затем используем приближение $\varphi(x) \approx L_M \widetilde{\varphi}(x) = \sum_{i=1}^M \widetilde{w}_i \chi_i(x)$.

В любом случае *требуется дополнительный сравнительный анализ* рандомизированных проекционных и проекционно-сеточных методов (типа Алгоритмов 1 и 3) как с позиций теории условной оптимизации, так и с соображениями об эффективности их применения для численного решения интегральных уравнений Фредгольма второго рода $\phi = K\phi + f$, возникающих при исследовании актуальных прикладных задач.

СПАСИБО ЗА ВНИМАНИЕ!

Войтишек Антон Вацлавович

vav@osmf.sscc.ru