Модулярное деление и вычисление обратного элемента по модулю степени двойки

Еникеев Р.Р.

Казанский (Приволжский) федерельный университет

Введение Обратный элемент

Обратный элемент для d по модулю p это такое число d^{-1} , которое удовлетворяет равенству

$$d*d^{-1} \equiv 1 \pmod{p}.$$

Для его существования необходимо, чтобы d было взаимно простым с p.

Mодулярное деление $\frac{e}{d} \bmod p$ определяется как $e*d^{-1} \bmod p$.

k-арный алгоритм для вычисления НОД u>v>0 состоит из:

Шаг редукции

$$u = |a * u + b * v|/k,$$

где $a, |b| \leq \sqrt{k} : a*u + b*v \equiv 0 \pmod{k}$ при $k = 2^{2W}$. Для нахождения a и b вычисляется $u/v \mod k$

lacktriangle Операция dmod определяется как $u=|u-c*v|/2^W$, где $c=u/v \bmod 2^W$.

Эти две операции выполняются поочередно, в результате чего длина обоих чисел уменьшается на W.

Вычисление модулярного деления по модулю 2^W и 2^{2W} является важнейшей задачей в k-арном алгоритме.

Расширенный алгоритм Евклида

Для любых двух чисел u и v существуют такие числа x и y (коэффициенты Безу), что выполняется:

$$u * x + v * y = \mathsf{HOД}(u, v).$$

Для вычисления этих коэффициентов используется расширенный алгоритм Евклида (РАЕ).

Для взаимно простых чисел коэффиценты Безу являются также и обратными элементами по модулю, т.е.

$$x = u^{-1} \bmod v, y = v^{-1} \bmod u.$$

Для получения $v^{-1} \mod \beta^n$ необходимо запустить этот метод, передав в качестве параметров $v \mod \beta^n$ и β^n (β — основание системы счисления).

Итеративное вычисление модулярного деления

Вычисление $u/v \mod \beta^n$ модулярного деления по m цифр (обобщение MODIV):

Algorithm 1 Алгоритм модулярного деления MODIV

$$\begin{aligned} v' &:= v^{-1} \bmod \beta^m \\ i &:= t := 0 \\ \text{while } i < n \text{ do} \\ v_i &:= v' * u \mod \beta^m \\ t &:= v_i * \beta^i + t \\ u &:= (u - v_i * v)/\beta^m \\ i &:= i + m \end{aligned}$$

$$\text{return } t \bmod \beta^n$$

Передав u=1, можно найти обратный элемент $v^{-1} \mod \beta^n$.

Рекурсивное вычисление обратного элемента

Рекурсивная формула для вычисления обратного элемента, которая выполняется для любых взаимно простых чисел v и β :

$$v^{-1} = (2 - v * v') * v' \mod \beta^2$$
, где $v' = v^{-1} \mod \beta$.

Алгоритм:

- ▶ Вычислить $v^{-1} \mod \beta^m$
- ightharpoonup Использовать формулу $\lceil \log_{eta} n/m \rceil$ раз
- ▶ Вернуть $v^{-1} \mod \beta^n$

Вычисления по модулю степени двойки

Случай $\beta=2$:

- ightharpoonup Деление/умножение на 2^m реализуется с помощью сдвига вправо/влево.
- ▶ при n = W и n = 2 * W можно воздержаться от нахождения остатка от деления на 2^i
- РАЕ необходимо запустить с параметрами v и 2^W , но из-за того, что максимальное значение, которое может храниться в памяти, равняется 2^W-1 , первый шаг нам нужно провести вручную, исходя из того, что $\lfloor 2^W/v \rfloor = \lfloor (2^W-1)/v \rfloor$.

Начальный шаг вычислений

В предыдущих алгоритмах необходимо вычисление обратного элемента $v^{-1} \mod 2^m$ на начальном этапе. Мы рассматриваем следующие способы:

- Без дополнительной памяти
 - $ightharpoonup v^{-1} \mod 2^m = v \mod 2^m$ при m равным 1, 2 или 3.
 - m=4 вычисление начального шага можно выполнить с помощью следующей формулы $((v<<1^\wedge v)\&4)<<1^\wedge v$
- ightharpoonup С дополнительной памятью: таблица, которая содержит значения $v^{-1} \mod 2^m$ для всех нечетных $0 < v < 2^m$.

Исследования

Относительное время работы алгоритмов для $\beta=2$ и ${\it N}=64$

Алгоритм	Время в зависимости от <i>т</i>							
	1	2	3	4	5–7	8	9–15	16
PAE	142							
MODIV_B	63	46	32	22	_			
MODIV_C	_			22	17–13	10.5	10.4-5.3	4.7
Recur_B	-	2.6	-	1.96	_			
Recur_C		_		1.9	_	1.4	_	1

В— без памяти, С— с памятью

Спасибо за внимание!